
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Experiences incrementally
porting a large legacy finite
element application to Sierra
using Kokkos

Jon Clausen, Mark Hoemmen, Alec Kucala ,
Malachi Phi l l ips

SAND2020-8715 C

Victor Br unini

A Retrospective on Making a Legacy Code Performance Portable

1. What is Aria?
2. History of Aria Performance Portability Work
3. Current performance results
4. Lessons Learned

2

What is Aria?

What is Aria?

Unstructured, nonlinear,
multiphysics finite element solver
Implicit, full Jacobian

Key Libraries:
◦Sierra Toolkit (STK)
◦Trilinos linear solver stack

D. Noble, M. Martinez, R. Rao, S. Roberts, H. Mendoza

History of Aria Performance
Portability

A Trip Back In Time

November 2001:
First commits to the Aria codebase
Pentium 4, 1 core @ 2 GHz
My first high school CS class using Visual Basic

6

2001

A Trip Back In Time

October 2012:
Titan is #1 on the Top500 as a hybrid CPU/GPU machine
Aria has made it 11 years as a CPU MPI-only code

7

2001 2012

A Trip Back In Time

October 2015:
First prototyping of threaded matrix assembly using Kokkos +
STK in Nalu
◦Co-design with Kokkos & Tpetra team members
◦Drove creation of Kokkos scratch memory API

8

2001 2012 2015

A Trip Back In Time

October 2016:
First prototyping in ariamini
◦Started by pulling actual code from Aria
◦Limited to just matrix assembly for steady state heat conduction
◦Small enough amount of code to rapidly prototype, but always
aware of how that will translate to the full application

9

2001 2012 2015 2016

A Trip Back In Time

February 2017:
Working performance portable
matrix assembly in ariamini
◦Use Kokkos::View inside main data
structures
◦Focused on OpenMP + SIMD for
performance on Knight’s Landing
◦Functional on GPU, but no
detailed performance exploration

10

2001 2012 2015 2016 2017

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Skybridge (Sandy
Bridge)

Morgan (Haswell) Ellis (KNL, HBM)

Ti
m

e
(s

)

Threads Threads + SIMD

A Trip Back In Time

August 2017:
First step of Aria conversion based on ariamini
◦Refactor whole Expression system to Kokkos-based data structures with

SIMD support
◦ Interface to thread-parallel solvers based on Tpetra
◦CPU threading only

11

2001 2012 2015 2016 2017

A Trip Back In Time

December 2018:

Initial GPU support in Aria for very basic conduction problems

12

2001 2012 2015 2016 2017 2018

27.7

15.9

10.7
12.5

5.5 6.2

21.4

14.2

3

19.3

10

2.8

0

5

10

15

20

25

30

Execute Assembly Solve

R
u
n
ti

m
e

(s
)

TLCC2 np16 CTS-1 np36 P100 np1 V100 np1
Sandybridge

2s x 8c
Broadwell
2s x 18c 1 x P100 1 x V100

A Trip Back In Time

August 2019:

Comparable performance between dual-socket Broadwell and GPU on
realistic thermal problem

13

2001 2012 2015 2016 2017 2018

0

10

20

30

40

50

60

70

Nonlinear Iteration Assemble Solve Radiosity Solve

R
u
n
ti

m
e

(s
)

Broadwell np72 P100 + Broadwell np2 V100 + Power9 np2

2019 2020

A Trip Back In Time

August 2020:

Sierra 3-4x faster than dual-socket Broadwell on realistic thermal problem

14

2001 2012 2015 2016 2017 2018 2019 2020

0

500

1000

1500

2000

2500

3000

Broadwell 2s x 18c Sierra 4xV100

1 node

 Assemble Solve Radiosity Viewfactor Other

Current Performance
Portability Results

Current Performance Portability16

0

500

1000

1500

2000

2500

3000

Haswell 2s x 16c Broadwell 2s x 18c Skylake 2s x 18c ARM 2s x 28c Sierra 4xV100

1 node

 Assemble Solve Radiosity Other

Total Runtime on Realistic Thermal Problem

Lessons Learned

Working With Legacy Code is the Worst! … Right?

When does a reimplementation from scratch make sense?
◦ Is only a subset of the existing functionality needed (ever)?
◦ Is there no automated testing of the existing capability?
◦Are you targeting an entirely new userbase?

I argue that if the answer to any of those is no, it is better to
work with the existing codebase
◦You may end up with a completely new implementation by the end

18

Make Legacy Code an Advantage

Existing test suite provides immense value
◦Reproduces years of bugs
◦Covers the unusual use cases users have that are easy to
forget about

Extract key systems or kernels into miniapps
◦Most of the prototyping flexibility you get from a
reimplementation
◦Easier to keep in mind the integration with the full application

Identify appropriate translation layers between new & old code
as needed

19

Kokkos is a Starting Point for Application Performance Portability

Basic building blocks for performance portability
◦ Parallel loop patterns (for, reduce, scan)
◦Memory layout control (View)
◦ Portable SIMD library (coming soon)

Build application specific abstractions over Kokkos
◦ Leverage application specific knowledge for performance &

maintainability

20

The GPU Performance Portability Cliff21
Pe

rf
or

m
an

ce

Amount of Porting Work

Ideal Case:
• Start with reasonable performance
• Platform useful for users from day 1
• Additional porting work monotonically

improves performance

The GPU Performance Portability Cliff22
Pe

rf
or

m
an

ce

Amount of Porting Work

Our Experience with GPUs:
• Initial switch from 1 MPI rank per core to 1

rank per GPU kills performance
• Long period of time where platform is

unusable for users
• MPS is a possible solution, but:

• Previously both performance &
functionality issues

• Currently memory usage issues

The GPU Performance Portability Cliff23
Pe

rf
or

m
an

ce

Amount of Porting Work

Our Experience with GPUs:
• Starting to support additional existing

capability drops you off the cliff again

Testing Challenges

Testing throughput on the GPU is a major issue
Aria has roughly 800 regression tests
◦Vast majority are 1-4 MPI ranks and run in 1-10s on CPU
platforms
◦3-5 minute runtime for total test suite with distributed testing
◦Minimum 15s runtime in GPU builds
◦Sharing GPU between multiple tests causes random failures
◦> 1 hour runtime for total test suite in GPU builds

24

Questions?25

